
"Agriculture should be advanced by scientific knowledge."

Do I advocate:

- Hydroponics ? no
- Biodynamics ? no
- Aquaculture ? no
- Permaculture ? no
- "Back to Eden" ? no

Building a "soil bank" of nutrition for you and your crops starts with establishing the right mineral environment for highly active microbiology. Fungi, bacteria, algae and enzymes are the biological catalysts for the mineral nutrients that your plants (and you) need.

Building this bank is a process that involves evaluating your soil analysis in two steps. This presentation will guide you through the first step.

Major Soil Orders of the United States

Minnora, West Virginia

What is soil?

Minerals50%Air23-25%Water23-25%Organic Matter3-5%

Three primary soil chemical classes:

Acid soils

- pH below 7
- free hydrogen H⁺ in Base Saturation
- 70% of world's arable land

Calcareous soils

- alkaline pH 7.1 to 8.3
- contain Calcium and Magnesium carbonates
- often contain phosphates
- can be very fertile

Sodic soils

- highly alkaline pH above 8
- excessive free sodium Na⁺ (above 15% in Base Saturation)
- very poorly drained, poor water penetration
- found in arid and semi-arid regions

First Step: A Soil Analysis

- Use a reputable, privately run soil laboratory
- Be certain that they include a "Base Saturation" component
- Extraction Methods:

Bray (for Calcareous soils with pH >7.3) Ammonium Acetate or Morgan (low acid extraction) Mehlich I

*<u>Mehlich III (for acidic to pH <7.3 soils)</u> Olsen (for very high pH >8 and Sodic soils)

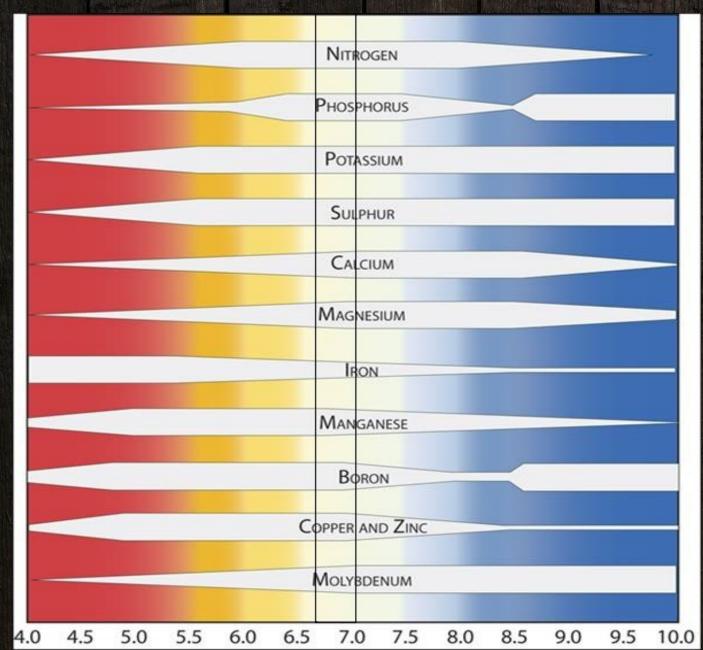
I like the "S3M" package from A&L Eastern Laboratories in Richmond, VA http://al-labs-eastern.com/agricultural.html Other laboratories listed here: http://www.bereagardens.org/soil.html

pH scale (potential Hydrogen)

0 Neutral H⁺ (Hydrogen ions) H⁺ in base Saturation Na⁺ in Base Saturation

14 OH-(Hydroxyl ions)

Limestone raises pH ---->


6.5 to 7 optimum range

<---- Sulfur lowers ph

Calcitic limestone Hydrated limestone **Dolomite limestone**

Elemental Sulfur

Nutrient availability changes according to pH

17 Essential Plant Nutrients:

Carbon, Hydrogen, Oxygen (Environmental Nutrients)

Nitrogen, Phosphorous, Potassium (Primary Nutrients)

Calcium, Magnesium, Sulfur (Secondary Nutrients)

Boron, Copper, Iron, Zinc, Molybdenum, Manganese, Chlorine, Nickel (Trace Nutrients)

*16 Additional Elements Required for <u>Human Health</u>

Aluminum* Arsenic* Boron **Bromine*** Cadmium* Calcium Carbon Chlorine Chromium* Cobalt* Copper Fluorine* Germanium* Hydrogen lodine* Magnesium

Manganese Molybdenum Nickel Nitrogen Oxygen Phosphorous Potassium **Rubidium*** Selenium* Silicon* Sodium* Sulfur Tin* Tungsten* Vanadium* Zinc

Plants *mine* the soil for minerals

Only a few of these are replaced through fertilization of crops


- Typically only Nitrogen, Phosphorous, Potassium are applied
- Occasionally Sulfur or Calcium are added
- Rarely some trace elements added through foliar applications
- Soil deficiencies are very rarely corrected
- The other 16 elements required for human nutrition are ignored as considerations in agriculture

Dr. William A. Albrecht, University of Missouri

• Correlated soil chemistry (health) with human health

 Developed understanding of Base Saturation of the Cation Exchange Capacity in soils

 Emphasized the role of calcium in ratios with magnesium and potassium to promote optimum health

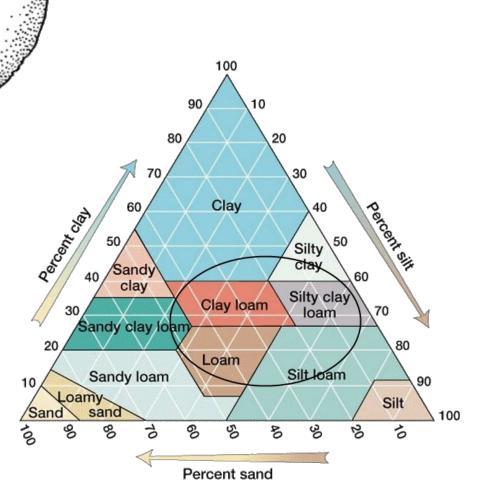
"NPK formulas, (nitrogen, phosphorus, potassium) as legislated and enforced by State Departments of Agriculture, mean malnutrition, attack by insects, bacteria and fungi, weed takeover, crop loss in dry weather, and general loss of mental acuity in the population, leading to degenerative metabolic disease and early death."

William A. Albrecht

Soil texture: a reference to the size of soil particles

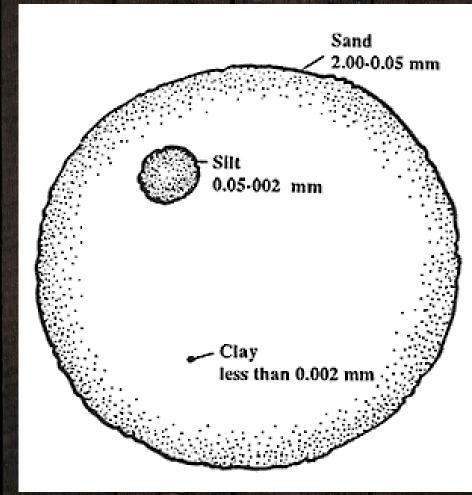
0.05-002 mm

Clay


less than 0.002 mm

Sand 2.00-0.05 mm

- Silt
- Clay


- Texture indicates potential capacity to hold water and nutrients
- Gives an indication of friability

Soil particles have a slight <u>negative electrical charge</u>

<u>Size</u> of soil particles determines how much negative charge in a given quantity or volume of soil

Sand - very low Silt - low Clay - high

Cation Exchange Capacity (CEC)

Measurement of a soil's ability to hold cation (positively charged ion) nutrients in the soil

Cations are positively charged ions * Ca** Calcium Mg** Magnesium K* Potassium H* Hydrogen Na* Sodium

Anions are negatively charged ions

Example of a soil analysis report

Page 1 of 1 Report Number: 10-103-0558 Account Number: 00879

Date Received: 04/13/2010

Send To: ROBERT GREGORY

97 MILO RD

ORMA WV 25268

Date Of Analysis: 04/14/2010

A&L Eastern Laboratories, Inc.

7621 Whitepine Road Richmond, Virginia 23237 (804) 743-9401 Fax (804) 271-6446

Grower: BEREA GARDENS Submitted By: BOB GREGORY Farm ID:

SOIL ANALYSIS REPORT Date Of Report: 04/15/2010

Analytical Method(s): Mehlich 3

			Organ	nic Mat	ter		Phos	phorus		F	otassi	um	Magn	esium	Ca	alcium		Sodi	um	1	рН	Ac
Sample ID Field ID	Lai Numi		% F	Rate	ENR Ibs/A	Mehli opm	ch 3 Rate	Re ppm	serve Ra	te pp	K	Rate	M ppm	g Rate	ppm	Ca Rat	e pr	Na om	Rate	Soil pH	Buffer Index	
F1	05346		1.7	L	68 3	37	М			13	1	М	199	М	1097		L			5.2	6.54	
		Perce	ent Base	e Satura	ation	Ni	trate	Si	ılfur	Z	inc	Mar	iganese	In	on	Сор	per	В	loron	Soluble	e Salts	Chlo
Sample ID Field ID	K %	Mg %	Ca %	Na %		N ppm	O ₃ N Rate	ppm	S Rate	2 ppm	Zn Rate		Mn	F ppm	e Rate	Cippm	1	ppm	B Rate	S: ms/cm		C ppm
F1	2.9	14.5	48.1		34.0			19	М	1.7	L	29	н	121	VH	2.1	н	0.4	L	8		
8			2 m m 1											-10						8		
Values on this repo	rt represent ti	he plant a	wallable r	utrients	in the	Explana	tion of sy	mbols 5	6 (percer	t) ppm	(parts p	er millio	on), libs/A		This report	t apples to	sample	(s) tester	d Samples	are retained	ia	

Value soil. Rating after each value: VL (Very Low), L (Low), M (Medium), H (High), VH (Very High). ENR - Estimated Nitrogen Release. C.E.C. + Cation Exchange Capacity.

(pounds per acre), ms/cm (milli-mhos per centimeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm.

maximum of thirty days after testing

Analysis prepared by A&L Eastern Laboratories. Inc.

Pauric McGroary

C.E.C

meq/100g

11.4

Aluminum

AL

ppm

Acidity

H

meq/100g

3.9

Chloride

CI

Rate

Analytical Method(s): Mehlich 3

Date Received:	04/13/201	0		Date O	f Analy	sis: O	4/14/20	10		Date O	fRepo	ort: 04/1	15/201	0										
e 1992	0.00		Org	janic N	latter			Phos	phorus		F	otassi	um	Magne	esium	Ca	lcium		Sodiu	m	ŧ	н	Acidity	C.E.C
Sample ID Field ID	Lat Numt	Concern State	%	Rate	ENF Ibs//	A 144	Mehlic pm		Re ppm	serve Ra	te pp	K om	Rate	M ppm	g Rate	ppm	Ca Rate	e pp	Na m	Rate	So il pH	Buffe Index		j meq/100g
F1	05346	Ū.	1.7	L	68	37	7	М			13	11	М	199	М	1097	1				5.2	6.54	3.9	11.4
	-						-																	
an in the state		Per	cent Ba	ise Sat	turation	۱.	Nit	rate	Su	lfur	Z	inc	Man	ganese	in	on	Copp	er	B	oron	Soluble	Salts	Chloride	Aluminum
Sample ID Field ID	к %	Mg %	Ci %		Na %	H %	NC ppm	Rate	ppm	S Rate		Zn Rate	ppm	Mn Rate	F ppm	[:] e Rate	Cu ppm		ppm	B Rate	SS ms/cm	The second second	CI ppm Rate	Al
F1	2.9	14.5	i 48	.1		34.0			19	M	1.7	L	29	н	121	VH	2.1	н	0.4	L				
	5	20	>6	8		0							3			1								

Values on this report represent the plant available nutrients in the soil. Rating after each value. VL (Very Low), L (Low), M (Medium), H (High), VH (Very High). ENR - Estimated Nitrogen Release. C.E.C. - Cation Exchange Capacity. Explanation of symbols. % (percent), ppm (parts per million), lbs/A (pounds per acre), ms/cm (milli-mhos per centimeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm. This report applies to sample(s) tested. Sample's are retained a maximum of thirty days after testing.

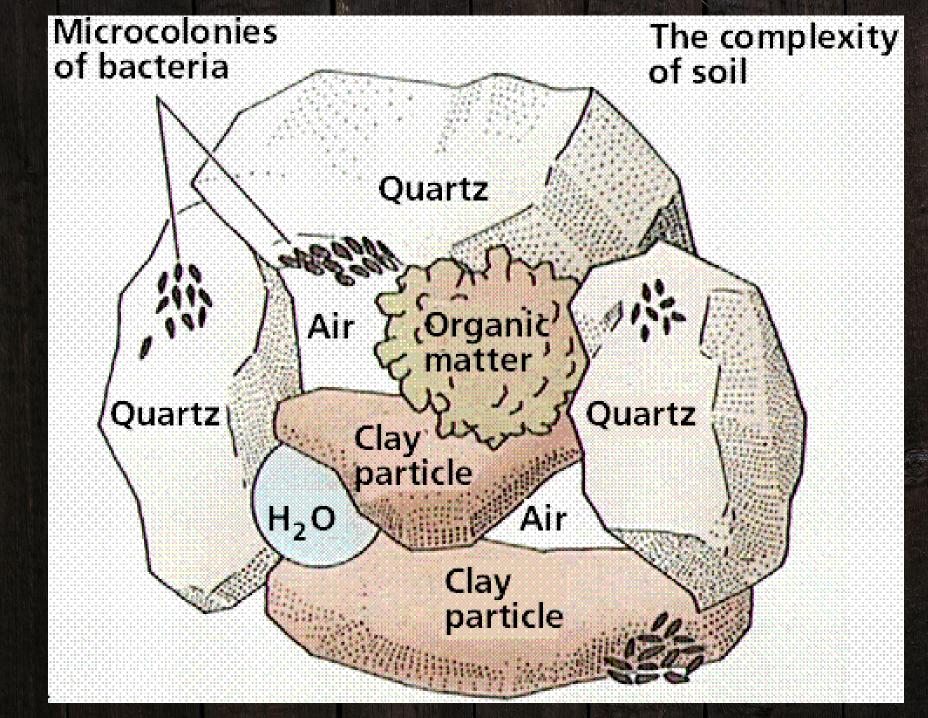
Analysis prepared by: A&L Eastern Laboratories, Inc.

Pauric McGroary

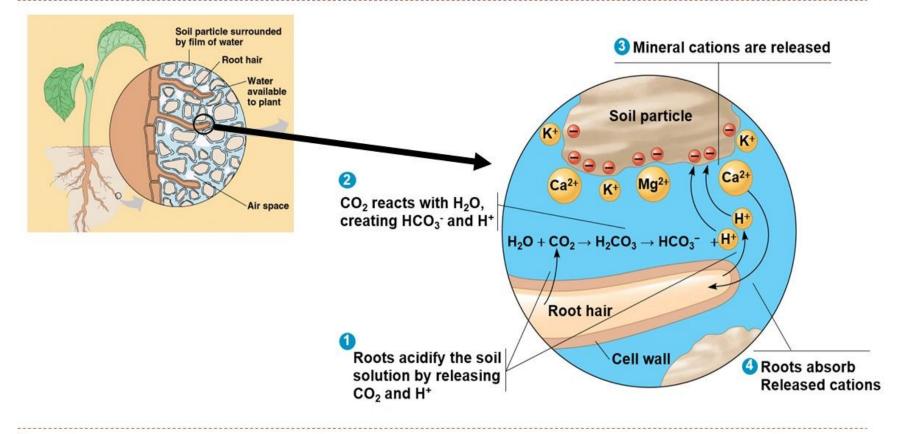
The "Base Saturation" refers to the quantity of cations adsorbed by the soil particles and held by the soil's negative charge.

The "Percent Base Saturation" tells us how much of each cation element is presently attached in the soil complex.

Desired levels of elements in the Base Saturation


Calcium > 68%

Magnesium 17 to 20% Potassium 3 to 5% Cation Exchange Capacity (CEC)


Measurement of a soil's ability to hold cation (positively charged ion) nutrients in the soil

Cations are positively charged ions * Ca** Calcium Mg** Magnesium K* Potassium H* Hydrogen Na* Sodium

Anions are negatively charged ions

Cation Exchange in the Soil

Analytical Method(s): Mehlich 3

	1000	8	Org	anic Ma	atter			Phos	phorus		F	otassi	um	Magne	esium	Ca	lcium		Sodiu	m	р	н	Acidi	у	C.E.C
Sample ID Field ID	Lai	1	%	Rate	ENR Ibs/A	ppn	Nehlict N		Re ppm	serve Ra	te pp	K m	Rate	M ppm	g Rate	ppm	Ca Rate	pp	Na Im	Rate	So il pH	Buffer Index		0g m	neq/100g
F1	05346		1.7	L	68	37		М			13	1	Μ	199	М	1097	l	2			5.2	6.54	3.9		11.4
		Per	cent Ba	se Satu	iration		Nitr	ate	Su	lfur	z	inc	Man	ganese	In	on	Сорр	er	Bo	ron	Soluble	Salts	Chloride	Alu	luminum
Sample ID Field ID	к %	Mg %	Ca %		S22 8	2 L	NO ppm	3	ppm :	S Rate	2 ppm	Zn Rate	ppm	Mn Rate	F ppm	e Rate	Cu ppm		ppm I	B Rate	SS ms/cm	C	CI ppm Ra	te	AI ppm
F1	2.9	14.5	i 48.	1	34	.0	0		19	М	1.7	L	29	н	121	VH	2.1	н	0.4	L					
	5	20	>6	0	0								Ī			1				-					

Values on this report represent the plant available nutrients in the soil. Rating after each value: VL (Very Low), L (Low), M (Medium), H (High), VH (Very High). ENR - Estimated Nitrogen Release. C E C. - Cation Exchange Capacity. Explanation of symbols. % (percent), ppm (parts per million), lbs/A (pounds per acre), ms/cm (milli-mhos per centimeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm.

This report applies to sample(s) tested. Sample's are retained a maximum of thirty days after testing.

Analysis prepared by A&L Eastern Laboratories. Inc.

by Powie Me Georg

Pauric McGroary

*Tons per acre limestone = .5 (CEC x H%)

*(modifies the "plow layer" or top 6 2/3" of soil)

SOIL ANALYSIS REPORT

2 10 12	0.00		Orga	anic Ma	tter	-	Pho	sphoru	5	F	Potassi	um	Magn	esium	Ci	alcium		Sodiu	m	P	н	Acidity	C.E.C
Sample ID Field ID	Lat	10 S S S S	%	Rate	ENR Ibs/A	M ppm	ehlich 3 Rat	and services of a	Reserve Ra	te pp	K	Rate	M ppm	g Rate	ppm	Ca Ra	te pp	Na m	Rate	Soil pH	Buffe Index		, meq/100ç
F1	05346		1,7	L	68	37	ħ	^		13	91	М	199	М	1097		L			5.2	6.54	3.9	11.4
	_	Perc	ent Ba	se Satu	ration		Nitrate		ulfur	Z	inc	Man	ganese	In	on	Cop	per	B	oron	Soluble	Salts	Chloride	Aluminum
Sample ID Field ID	к %	Mg %	Ca %	N	a I	S	NO ₃ N Pm Ra	te ppm	S Rate	ppm	Zn Rate		Mn		e Rate	C	u	ppm	B Rate	SS ms/cm	75	CI ppm Rate	Al
F1	2.9	14.5	48.	1	34	1.0		19	М	1.7	L	29	н	121	VH	21	н	0.4	L				
			1					1		Ì		Î		1				İ		Ì			1

Values on this report represent the plant available nutrients in the soil. Rating after each value. VL (Very Low), L (Low), M (Medium), H (High), VH (Very High). ENR - Estimated Nitrogen Release. C E C - Cation Exchange Capacity. Explanation of symbols % (percent), ppm (parts per million), lbs/A (pounds per acre), ms/cm (milli-m/hos per centimeter), meg/100g (milli-equivalent per 100 grams). Conversions, ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm. This report applies to sample(s) tested. Sample's are retained a maximum of thirty days after testing.

Analysis prepared by A&L Eastern Laboratories. Inc.

Analytical Method(s):

by Pownie Mr Ge

Pauric McGroary

Example:

Tons per acre limestone = .5 (11.4 x .34) = 1.938 tons per acre (to modify the top 12" of soil multiply this result by 1.8) 1.938 X 1.8 = 3.48 tons of limestone per acre

Analytical Method(s): Mehlich 3

Date Received:	04/13/201	0		Date C	f Analy	sis: O	4/14/20	010		Date Of	Repo	rt: 04/1	15/201	0										
2 17.22	2353	5	Or	ganic I	Matter			Phos	phorus		F	otassi	um	Magne	esium	Ca	alcium		Sodiu	m	1	рН	Acidity	C.E.C
Sample ID Field ID	Lat	S	%	Rate	ENF Ibs//		Mehli pm		Re ppm	serve Rat	te pp	K m	Rate	M ppm	g Rate	ppm	Ca Rat	e pp	Na Im	Rate	So il pH	Buffer		meq/100g
F1	05346		1.7	L	68	37	7	М			13	1	М	199	М	1097		L			5.2	6.54	3.9	11.4
								- 25					12				1							1.3
		Per	cent B	ase Sa	turation	1	Ni	trate	Su	lfur	Z	inc	Mar	iganese	in	on	Сор	per	B	oron	Soluble	e Salts	Chloride	Aluminum
Sample ID Field ID	к %	Mg %		Ca %	Na %	H %	N ppm	O ₃ N Rate	ppm	S Rate		Zn Rate		Mn Rate	F ppm	[:] e Rate	Cu ppm		ppm	B Rate	S: ms/cm	S Rate	Cl ppm Rate	Al
F1	2.9	14.	5 4	8.1		34.0		6	19	М	1.7	L	29	н	121	VH	2.1	н	0.4	L				
	5	20	>	68		0							3		2	3				-				6

Values on this report represent the plant available nutrients in the soil. Rating after each value. VL (Very Low), L (Low), M (Medium), H (High), VH (Very High). ENR - Estimated Nitrogen Release. C E.C. - Cation Exchange Capacity. Explanation of symbols. % (percent), ppm (parts per million), lbs/A (pounds per acre), ms/cm (milli-mhos per centimeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm. This report applies to sample(s) tested. Samples are retained a maximum of thirty days after testing. Analysis prepared by: A&L Eastern Laboratories. Inc.

Mª GROM

Pauric McGroary

 Types of Limestone:

 Limestone (calcitic)
 CaCO³

 Hydrated Lime
 Ca(OH)²

 Dolomite
 CaCO³ MgCO³

 *Ratio of Calcium to Magnesium varies with brands

 Always READ THE LABEL

Analytical Method(s): Mehlich 3

	200		Orga	nic Mat	ter	Phos	phorus	Ę.	P	otassiu	ım	Magne	esium	Ci	alcium		Sodiu	m	р	н	Acidity	C.E.C
Sample ID Field ID	Num	Carlos and Carlos	%	Rate	ENR Ibs/A	Mehlich 3 ppm Rate	A REAL PROPERTY.	eserve Rat	e ppr	K n I	Rate	M ppm	g Rate	ppm	Ca Rate	pp	Na m	Rate	So il pH	Buffe Index		meq/100g
F1	05346		1.7	L	68	37 M			131	1	М	199	М	1097	L	2			5.2	6.54	3.9	11.4
		Perc	ent Bas	e Satur	ation	Nitrate	Si	Jlfur	Zii	nc	Man	ganese	In	on	Сорр	er	Во	ron	Soluble	Salts	Chloride	Aluminum
Sample ID Field ID	К %	Mg %	Ca %	Na %		NO ₃ N ppm Rate	ppm	S Rate	Z ppm	n Rate	a survey i	Mn Rate		e Rate	Cu		E ppm	B Rate	SS ms/cm	New York Contractory	CI ppm Rate	Al
F1	2.9	14.5	48.1		34.0		19	м	1.7	L	29	н	121	VH	2.1	н	0.4	L				
	5	20	>68	3	0									2					1			

H (High), VH (Very High). ENR - Estimated Nitrogen Release. C.E.C. - Cation Exchange Capacity.

(milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm.

Analysis prepared by: A&L Eastern Laboratories. Inc.

We have now displaced the Hydrogen in the Base Saturation and that 34% is now occupied by Calcium and Magnesium. The Hydrogen is now 0% and the pH is neutral (7)

Since we used Dolomite with roughly a 2:1 ratio of Calcium to Magnesium, we have increased the Calcium level by about 22.5% and the Magnesium level by about 11.5%

Our Calcium level has moved from 48.1% to 70.6% The Magnesium level has moved from 14.5% to 26%

21% Ca + 12% Mg (2:1 ratio of Ca to Mg) Dolomite CaCO³ MgCO³

Pauric McGroary

Analytical Method(s): Mehlich 3

- 1992	0155		Orga	nic Ma	atter		Phos	phorus	1	F	Potassi	um	Magne	esium	Ca	alcium		Sodiu	m	р	н	Acidity	C.E.C
Sample ID Field ID	Lab	1000	%	Rate	ENR Ibs/A	Me ppm	hlich 3 Rate	1	serve Ra	te pp	K am	Rate	M ppm	g Rate	ppm	Ca Rate	pp	Na m	Rate	So il pH	Buffer Index		meq/100g
F1	05346		1.7	L	68	37	М			13	1	М	199	М	1097	l	1			5.2	6.54	3.9	11.4
-					1		2.02					1				ľ							1.2
		Perce	ent Bas	e Sati	iration		Nitrate	Sı	ılfur	Z	inc	Mar	iganese	in	on	Сорр	er	Ba	oron	Soluble	Salts	Chloride	Aluminum
Sample ID Field ID	к %	Mg %	Ca %		la H 6 %		NO ₃ N m Rate	ppm	S Rate		Zn Rate	ppm	Mn Rate	U	e Rate	Cu ppm		ppm	B Rate	SS ms/cm	The second s	Cl ppm Rate	Al
F1	2.9	14.5	48.1	ŝ.	34	0		19	M	1.7	L	29	н	121	VH	2.1	н	0.4	L				
	5	20	>68		0										1						Ť		

Values on this report represent the plant available nutrients in the soil. Rating after each value: VL (Very Low), L (Low), M (Medium), H (High), VH (Very High), ENR - Estimated Nitrogen Release. C.E.C. - Cation Exchange Capacity. Explanation of symbols. % (percent), ppm (parts per million), lbs/A (pounds per acre), ms/cm (milli-mhosper centimeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm. This report applies to sample(s) tested. Sample's are retained a maximum of thirty days after testing.

Analysis prepared by: A&L East em Laboratories, Inc.

Pauric McGroary

Our Calcium level has moved from 48.1% to 70.6% The Magnesium level has moved from 14.5% to 26%

To avoid raising the Magnesium level too high I can use a combination of limestone types. By solving for how much Magnesium to apply using Dolomite and then adding Calcitic limestone, I can achieve a better Magnesium to Calcium ratio.

Analytical Method(s): Mehlich 3

- 1972	2013	5	Orga	anic Ma	atter		Phos	phorus		F	otassi	um	Magne	esium	C	alcium	1	Sodium	n	р	н	Acid	ity	C.E.C
Sample ID Field ID	Lat Numt	1	%	Rate	ENR Ibs/A	ppn	Vehlich 3 n Rate	Re ppm	eserve Ra	te pp	к m	Rate	M ppm	g Rate	ppm	Ca Rate	pp	Na m F	Rate	So il pH	Buffe Index			meq/100g
F1	05346		1.7	L	68	37	м			13	1	М	199	М	1097	L				5.2	6.54	3.9		11.4
-												Ĩ.									-			1.12
Comple ID		Perc	ent Ba	se Satu	iration		Nitrate	Sı	ılfur	z	inc	Mar	iganese	lr	on	Сорр	er	Bor	on	Soluble	Salts	Chloric	le	Aluminum
Sample ID Field ID	к %	Mg %	Ca %			2	NO ₃ N ppm Rate	ppm	S Rate	2 ppm	Zn Rate	ppm	Mn Rate	f ppm	Fe Rate	Cu ppm	Rate	B ppm		SS ms/cm	The second second	CI ppm R	ate	Al ppm
F1	2.9	14.5	48.	1	34	.0	6	19	M	1.7	L	29	н	121	VH	2.1	н	0.4	L					
	5	20	>63	8	0										10					İ				

soil. Rating after each value: VL (Very Low), L (Low), M (Medium), H (High), VH (Very High). ENR - Estimated Nitrogen Release. C.E.C. - Cation Exchange Capacity.

(pounds per acre), ms/cm (milli-mhos per centimeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm.

maximum of thirty days after testing

Analysis prepared by: A&L Eastern Laboratories, Inc.

Pauric McGroary

To solve for a Magnesium level of 20% I use this equation to tell me how many pounds of Magnesium per acre to apply:

240 X CEC (.20 – Mg%)

240 X 11.4 (.20 - .145) 240 X 11.4 X .055 = <u>150.48 Pounds of Magnesium</u> or

The Dolomite I have contains 12% Magnesium, so to determine how much to apply I divide the amount I need by the 12%: 150.48 / .12 = 1,254 pounds of Dolomite per acre to raise my Mg level to 20% Again, for a depth of 12" multiply the result by 1.8 (1,254 X 1.8 = 2,257 lbs. Dolomite per acre)

Analytical Method(s): Mehlich 3

- 1992	0.03		Orga	nic Mat	tter		Phos	ohorus		P	otassiu	um	Magne	sium	Ca	alcium	1	Sodiu	m	p	н	Acidity	C.E.C
Sample ID Field ID	Lab Numb	1.	%	Rate	ENR Ibs/A	Me ppm	hlich 3 Rate	Re ppm	serve Rat	te pp	m I	Rate	M ppm	g Rate	ppm	Ca Rate	pp	Na m	Rate	So il pH	Buffer Index		meq/100g
F1	05346		1.7	L	68	37	М			13	1	м	199	М	1097	L				5.2	6.54	3.9	11.4
-																-							115
Sample ID Field ID	к	Perc Mg	ent Bas Ca	Na	a H	-	Nitrate NO ₂ N		lfur S		nc n		ganese Mn		on :e	Coppe Cu		-	oron B	Soluble		Chloride Cl	Aluminum Al
	%	%	%	%	%	pp	m Rate	ppm	Rate	ppm	Rate	ppm	Rate	ppm	Rate	ppm I	Rate	ppm	Rate	ms/cm	Rate	ppm Rate	ppm
F1	2.9	14.5	48.1		34.	0	e	19	М	1.7	L	29	н	121	VH	2.1	н	0.4	L				2
	5	20	>68	2	0								12		1								

Values on this report represent the plant available nutrients in the soil. Rating after each value: VL (Very Low), L (Low), M (Medium), H (High), VH (Very High), ENR - Estimated Nitrogen Release. C E.C. - Cation Exchange Capacity. Explanation of symbols: % (percent), ppm (parts per million), lbs// (pounds per acre), ms/cm (milli-rinkos per centimeter), meg/100g. (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm. This report applies to sample/s) tested. Sample's are retained a maximum of thirty days after testing.

Analysis prepared by: A&L Eastern Laboratories, Inc.

Pauric McGroary

We determined that I need 3.48 tons of limestone per acre, so: 3.48 X 2,000 = 6,960 pounds of limestone per acre is required 6,960 - 2,257 = 4,703 6,960 = total limestone needed 2,257 = dolomite used to meet the Mg requirement 4,703 = the balance of limestone from a Calcitic source

Analytical Method(s): Mehlich 3

e 1972	2012		Orga	nic Ma	tter		Phos	phorus		F	otassi	um	Magne	esium	Ca	alcium		Sodiu	m	4	ьH	Acidity	C.E.C
Sample ID Field ID	Lab Numb	1.	%	Rate	ENR Ibs/A	Mei ppm	hlich 3 Rate	A REAL PROPERTY	serve Ra	te pp	к m	Rate	M ppm	g Rate	and the second	Ca Rate	pp	Na m	Rate	So il pH	Buffe Index		, meq/100g
F1	05346		1.7	L	68	37	М			13	1	М	199	М	1097	l	1			5.2	6.54	3.9	11.4
				1	-		243									ľ							1.5
200 202		Perce	ent Bas	e Satu	ration		Nitrate	Sı	ılfur	Z	inc	Man	ganese	in	on	Сорр	er	Bo	oron	Soluble	e Salts	Chloride	Aluminum
Sample ID Field ID	к %	Mg %	Ca %	N %			NO ₃ N m Rate	ppm	S Rate	2 ppm	Zn Rate	ppm	Mn Rate	U	e Rate	Cu ppm		ppm	B Rate	S: ms/cm		CI ppm Rate	Al
F1	2.9	14.5	48.1	2	34.	0		19	M	1.7	L	29	н	121	VH	2.1	н	0.4	L			5	
	5	20	>68		0										1								

Values on this report represent the plant available nutrients in the soil. Rating after each value. VL (Very Low), L (Low), M (Medium), H (High), VH (Very High), ENR - Estimated Nitrogen Release. C.E.C. - Cation Exchange Capacity. Explanation of symbols. % (percent), ppm (parts per million), lbs/A (pounds per acre), ms/cm (milli-mhosper centimeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm. This report applies to sample(s) tested. Sample's are retained a maximum of thirty days after testing.

Analysis prepared by: A&L Eastern Laboratories, Inc.

Pauric McGroary

Calcium level is now 76%

Magnesium level is now 20%

These now total 96%, leaving me room to raise my Potassium level to 4%

Optimum K% Desired

CEC	3%	4%	5%
	Pounds of I	K_20 (Potash) per ac	re
5	142	189	237
10	284	378	473
15	426	568	710
20	568	757	946
30	852	1135	1419
40	1135	1514	1892

For a CEC above 30 it is more economical to use this equation: K (critical level) = 110 + 2.5 X CEC

Optimum K% Desired

X

	5	
all all		
1	0	
	U	
	5	
1	h	
65)	
2	0	
	0	
0	0	
	0	
	0	

CEC

3%	4%	5%		
Pounds of K ₂ 0 (Potash) per acre				
142	189	237		
284	x 378	473		
426	568	710		
568	757	946		
852	1135	1419		
1135	1514	1892		

CEC = 11.4 K level is 2.9% I have around 312 and want 430 I need to add 118 pounds of K_2O (potash) per acre **Potassium Sources**

Potassium Sulfate0-0-50(50% potash)Greensand0-0-3(3% potash)

I need to add 118 pounds of potash 118/.50 = 236 pounds of Potassium Sulfate per acre 118/.03 = 3,933 pounds of Greensand per acre

To quote J. I. Rodale, from Organic Gardening magazine,

"we organic gardeners have let our enthusiasm run away with us. We have said that the nitrogen which is in organic matter is different (and thus somehow better) from nitrogen in a commercial fertilizer. But this is not so." And "actually there is no difference between the nitrogen in a chemical fertilizer and the nitrogen in a leaf."

Calcareous Soils

Can be high in Calcium⁺⁺ and/or Magnesium⁺⁺ Albrecht's principles still apply 3-5%K 17-20%Mg >68%Ca

Calcium source:Gypsum (calcium sulfate)23% CaMagnesium source:Epsom Salt (magnesium sulfate)9% or 20% MgPotassium source:Potassium Sulfate0-0-50These are neutral salts that do not change the pH

Physical properties of soils with Mg levels in excess of 20% will benefit from additional Calcium and organic matter. 1,000 to 2,000 pounds of Gypsum per acre is a good starting point to help with issues of crusting and water penetration

Calcareous Soils

Can be high in Calcium⁺⁺ and/or Magnesium⁺⁺ Albrecht's principles still apply 3-5%K 17-20%Mg >68%Ca

Calcium source:Gypsum (calcium sulfate)23% CaMagnesium source:Epsom Salt (magnesium sulfate)9% or 20% MgPotassium source:Potassium Sulfate0-0-50These are neutral salts that do not significantly change the pH

Sulfur:

To adjust pH Elemental Sulfur

>99% S

Sulfur rates to adjust soil pH

Desired change in pH	CEC 5	CEC 10	CEC 20
	*	*	*
8.5 to 6.5	370	730	1460
8.0 to 6.5	340	670	1340
7.5 to 6.5	300	600	1200
7.0 to 6.5	180	360	720
	(* pounds of sulfur per acre)		

Calcareous Soils

Physical properties of soils with Mg levels in excess of 20% will benefit from additional Calcium and organic matter.

Addition of sulfur to a calcareous soil forms calcium sulfate which will aid in water penetration and soften the soil by clumping or "floculating" soil particles.

Calcareous Soils

Adjusting Magnesium 240 X CEC (.20 - Mg%) = Pounds of elemental Magnesium per acre This is for the Plow Layer of 6 2/3" To adjust an acre foot, multiply the result by 1.8 Use Epsom Salt (Magnesium Sulfate)

Adjusting Potassium Use the chart we showed previously for Acid Soils

Sodic Soils

- High pH often above 8 (fizz test)
- Sodium (Na) above 15% in Base Saturation
- Poor water penetration/poor drainage/crusting
- <u>Use Olsen analysis method</u>

Adjust pH with Sulfur using the previous chart

Addition of sulfur to a Sodic soil also forms calcium sulfate which will aid in water penetration and soften the soil by clumping or "floculating" soil particles.

Sodic Soils

When soils are high in sodium, the goal is to replace the sodium with calcium and then leach the sodium out. There are two possible approaches for doing this:

1.) Dissolve the limestone (calcium carbonate) or gypsum (calcium sulfate) already present in the soil.

OR

2.) Add calcium to the soil.

If free lime is present in the soil, it can be dissolved by applying sulfur. Sulfur products reduce the pH which dissolves the lime, thus freeing up the calcium. This works well when the Base Saturation of Calcium is higher than 78%.

If free lime or gypsum is not present in adequate amounts as determined by a soil test, then add calcium.

Example gypsum requirement calculation:

If soil has a CEC of 18 and Sodium at 19%, and you desire a level of approximately 10% following treatment

19% - desired 10% = 9% exchangeable Na must be replaced with calcium (Ca) to achieve the desired level.

0.09 X 18 = 1.62 meq Na/100 g soil that must be replaced.

*1.7 tons Gypsum X 1.62 meq Na = 2.75 tons of gypsum.

2.75 tons of pure gypsum per acre would be required to reclaim the top 12 inches of this soil. Be sure to adjust this calculation for lower grades of gypsum and different soil depths.

*As a general rule of thumb, 1.7 tons of gypsum is required per meq of sodium.