

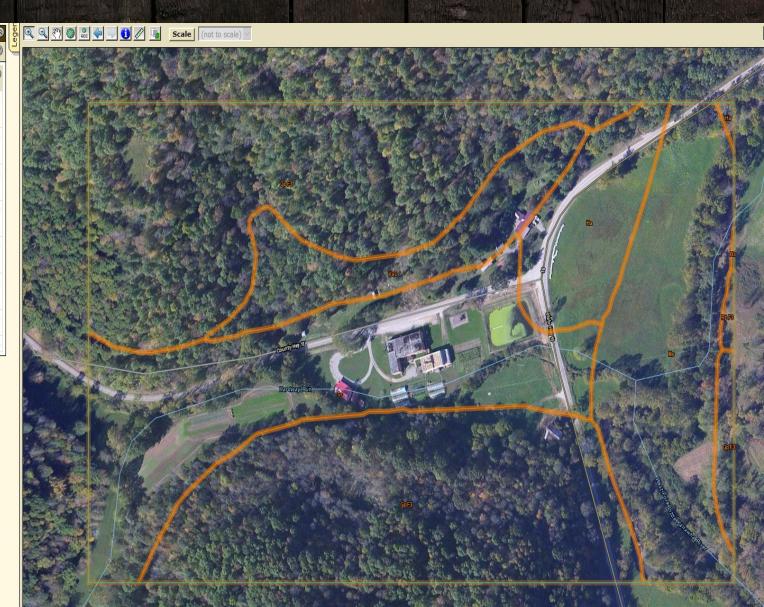
Fixing Depleted Soil

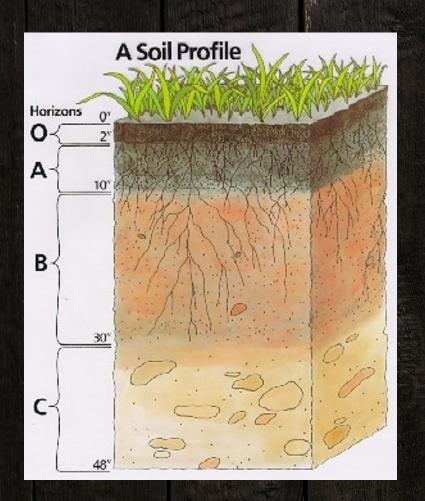
How to Balance Your Soil's Base Saturation pt.1 How to Balance Your Soil's Base Saturation pt. 2

How to Calculate and Amend Soil Nutrient Levels pt. 1 How to Calculate and Amend Soil Nutrient Levels pt. 2

Safe Soil Ammendments/Fertilizers

Garden site selection criteria


- 1. Full sun
- 2. Southern exposure/Slope
- 3. Drainage/Irrigation
- 4. Accessibility/Security
- 5. Soil type, Texture, Structure and Depth
- 6. Web Soil Survey

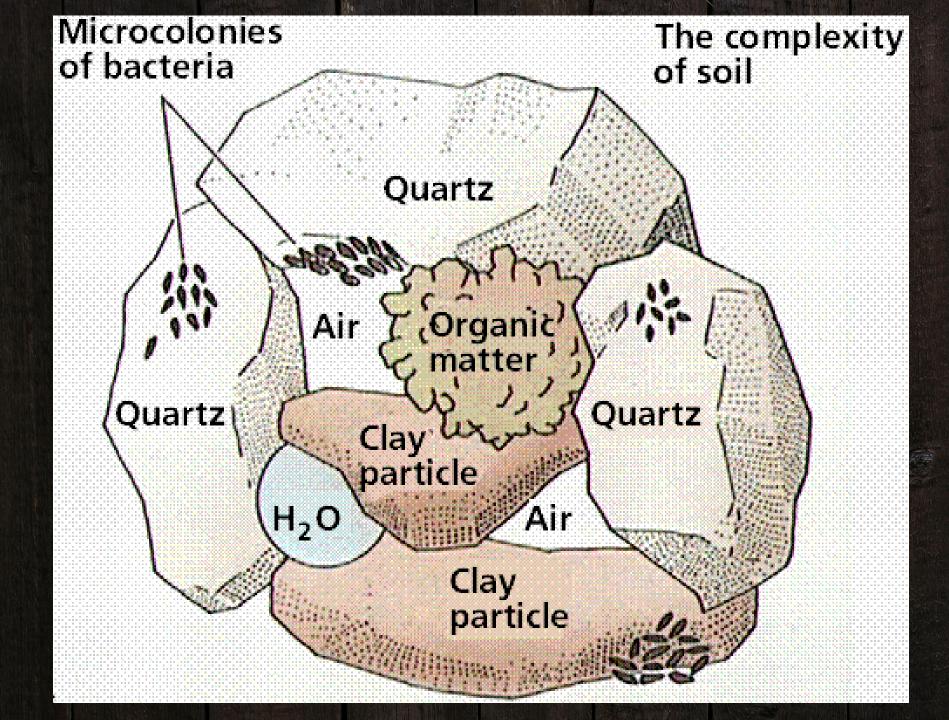


websoilsurvey.nrcs.usda.gov/app/

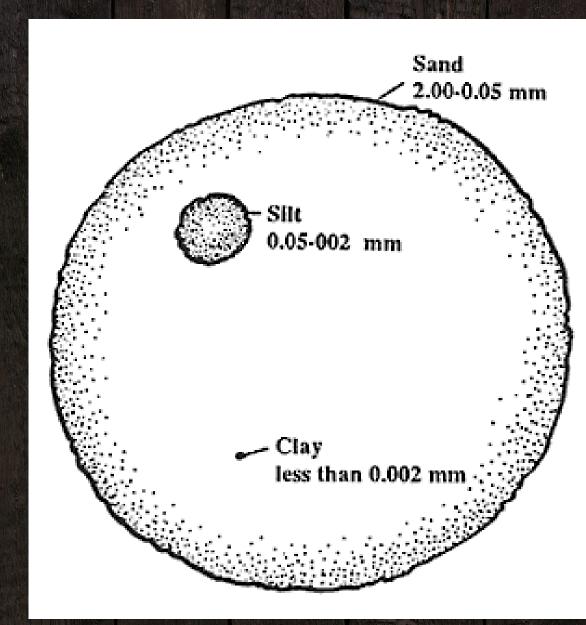
websoilsurvey.nrcs.usda.gov/app/

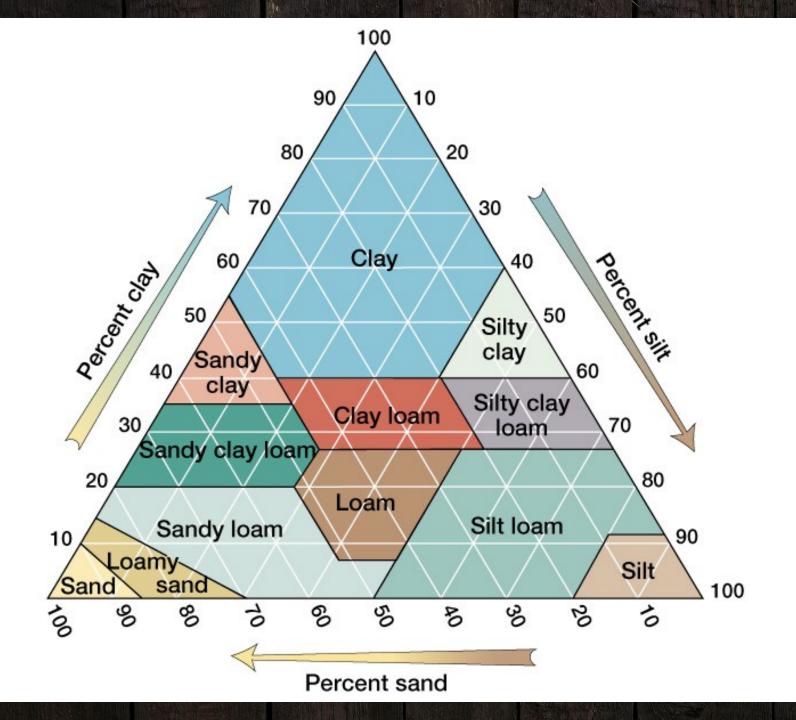

Map Uni	t Legend		6
			?
Calhou (WV6	n and Roane Counties, Wes (24)	t Virgir	nia 🛞
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
GpF3	Gilpin-Peabody complex, 35 to 70 percent slopes, severely eroded	34.9	48.5%
На	Hackers silt loam, 0 to 3 percent slopes, rarely flooded	4.8	6.6%
Ms	Moshannon silt loam, 0 to 3 percent slopes, occasionally flooded	11.2	15.5%
RpF3	Rock outcrop-Peabody-Gilpin complex, 35 to 70 percent slopes, severely eroded	0.2	0.3%
Ss	Sensabaugh silt loam, 0 to 3 percent slopes, occasionally flooded	15.9	22.1%
VaD	Vandalia silt loam, 15 to 25 percent slopes	5.0	7.0%
Totals fo	or Area of Interest	72.0	100.0%

- Soil textural class
- Depth of "A" horizon
- Depth to a restrictive feature
- Depth to water saturation
- Soil productivity comparisons



Minerals 50%
Air 23-25%
Water 23-25%
Organic Matter 3-5%





Soil Texture:

Size of soil particles

Sand Silt Clay

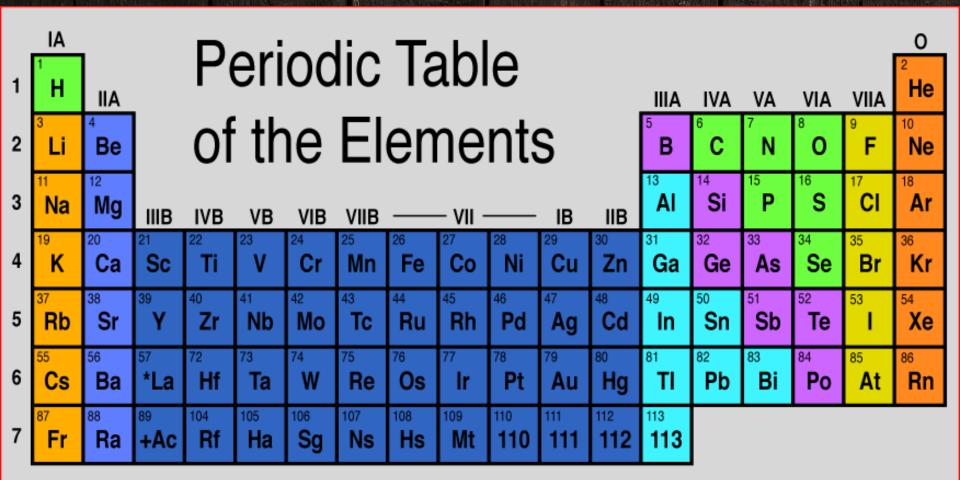
Soil Organic Matter:

Definition of "organic"

1. In chemistry:
Chemical molecules containing the a carbon atom

2. In agriculture:

Anything that is living or was living


Examples of soil organic matter:

- Plant roots
- Insects/Arthropods
- Bacteria
- Fungi
- Algae
- Detritus (compost, humus)*
- Animal wastes/byproducts

*sugars, starches, proteins, cellulose, lignins, fats, & waxes

Soil Organic Matter

- Improves soil structure
- Improves aeration and water retention
- Provides pH buffering capacity
- Increases <u>Cation Exchange Capacity</u>
- Provides nutrients for plants and microbes

* Lanthanide Series

+ Actinide Series

													⁷¹ Lu
90 Th	91 Pa	92 U	93 Np	Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

17 Essential Plant Nutrients:

Carbon, Hydrogen, Oxygen
(Environmental Nutrients)

Nitrogen, Phosphorous, Potassium (Primary Nutrients)

Calcium, Magnesium, Sulfur (Secondary Nutrients)

Boron, Copper, Iron, Zinc, Molybdenum, Manganese, Chlorine, Nickel
(Trace Nutrients)

"Assistive" Elements

Cobalt

Selenium

Vanadium

Silicon

16 Additional Elements Required for Human Health Aluminum Arsenic* Boron **Bromine*** Cadmium* Calcium Carbon Chlorine Chromium* Cobalt* Copper Fluorine* Germanium* Hydrogen lodine* Magnesium

Manganese Molybdenum Nickel Nitrogen Oxygen Phosphorous Potassium Rubidium* Selenium* Silicon* Sodium* Sulfur Tin* Tungsten* Vanadium* Zinc

Only a few of these are replaced through fertilization of crops.

- Typically only Nitrogen, Phosphorous, Potassium are applied
- Occasionally Sulfur or Calcium are added
- Rarely are trace elements added through foliar applications and soil deficiencies are not corrected
- The other 16 elements required for human nutrition are not considered as necessary in agriculture

Page 1 of 1

Sample ID

Field ID

F1

GH4

Report Number: 10-103-0558

Account Number: 00879

Mehlich 3

Rate

M

М

ppm

37

43

Phosphorus

ppm

Reserve

Rate

A&L Eastern Laboratories, Inc.

7621 Whitepine Road Richmond, Virginia 23237 (804) 743-9401 Fax (804) 271-6446

Send To: ROBERT GREGORY

97 MILO RD

ORMA WV 25268

Lab

Number

05346

05347

Grower:

BEREA GARDENS

Submitted By: BOB GREGORY

Farm ID:

SOIL ANALYSIS REPORT

1

Analytical Method(s): Mehlich 3

Date Received: 04/13/2010

Date Of Analysis: 04/14/2010

ENR

Ibs/A

68

92

Organic Matter

Rate

M

1.7

3.1

Date Of Report: 04/15/2010

ppm

131

282

Potassium Magnesium Calcium Sodium Hq Acidity C.E.C Ma Ca Na Soil Buffer н Rate Hq Index ppm Rate ppm Rate ppm Rate meg/100g meg/100g 199 1097 5.2 6.54 3.9 11.4 VH 333 1502 M

5.7

6.64

2.9

13.9

Sample ID Field ID	Percent Base Saturation					Nitrate		Sulfur		Zinc		Manganese		Iron		Copper		Boron		Soluble Salts		Chloride		Aluminum
	K	Mg	Ca %	Na %	H %	NO, N		S		Zn		Mn		Fe		Cu		В		SS		CI		Al
	% %	%				ppm	Rate	ppm	Rate	ppm	Rate	ppm	Rate	ppm	Rate	ppm	Rate	ppm	Rate	ms/cm	Rate	ppm	Rate	ppm
F1	2.9	14.5	48.1		34.0			19	М	1.7	L	29	Н	121	VH	2.1	Н	0.4	L					
GH4	5.2	20.0	54.0		21.1			12	L	2.6	М	44	Н	117	VH	2.4	Н	0.5	L					

Values on this report represent the plant available nutrients in the soil. Rating after each value: VL (Very Low), L (Low), M (Medium), H (High), VH (Very High), ENR - Estimated Nitrogen Release. C.E.C. - Cation Exchange Capacity

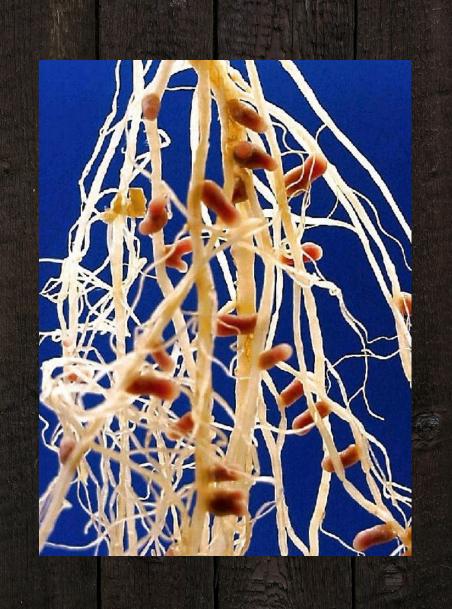
Explanation of symbols: % (percent), ppm (parts per million), lbs/A (pounds per acre), ms/cm (milli-mhos per centimeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = lbs/A, Soluble Salts ms/cm x 640 = ppm.

This report applies to sample(s) tested. Samples are retained a maximum of thirty days after testing.

Analysis prepared by: A&L Eastern Laboratories, Inc.

by: Pauric Mc Geory

Organic plant nutrient sources:


- Animal wastes
- Animal byproducts
- Crop residues
- Cover crops
- Composts
- Seaweeds
- Mined minerals

Nitrogen Fixation by legumes in symbiosis with Rhizobia bacteria

- Alfalfa
- Clover
- Vetch
- Peas
- Beans
- Sunn Hemp

Synthetic plant nutrient sources:

- Nitrogen atmosphere
- Phosphorous mined mineral
- Potassium mined mineral
- Sulfur mined mineral/refining byproduct
- Calcium mined mineral
- Magnesium mined mineral
- Micronutrients mined minerals/byproducts
- Additives clay, heavy metal byproducts, industrial, municipal wastes

To quote J. I. Rodale, from Organic Gardening magazine,

"we organic gardeners have let our enthusiasm run away with us. We have said that the nitrogen which is in organic matter is different (and thus somehow better) from nitrogen in a commercial fertilizer. But this is not so." And "actually there is no difference between the nitrogen in a chemical fertilizer and the nitrogen in a leaf."

Blended fertilizers may contain hazardous ingredients!

Fertilizer Plant

Feedlot

Bacillus sphaericus

Rhizobia

Nitrosomonas

Actinomycetes

Streptomycetes

Fungi

Mycorrhizae

Ectomycorrhizae