Steps to Productive Soil

False witness has been borne in condemning land which, if properly worked, would yield rich returns. The narrow plans, the little strength put forth, the little study as to the best methods, call loudly for reform. The people need to learn that patient labor will do wonders. There is much mourning over unproductive soil, when if men would read the Old Testament Scriptures they would see that the Lord knew much better than they in regard to the proper treatment of land. After being cultivated for several years, and giving her treasure to the possession of man, portions of the land should be allowed to rest, and then the crops should be changed. {FE 323.1}

We should work the soil cheerfully, hopefully, gratefully, believing that the earth holds in her bosom rich stores for the faithful worker to garner, stores richer than gold or silver. With proper, intelligent cultivation the earth will yield its treasures for the benefit of man. The mountains and hills are changing; the earth is waxing old like a garment; but the blessing of God, which spreads a table for His people in the wilderness, will never cease. {6T 178.2}

Steps to Productive Soil

Build Organic Matter Balance Nutrients Proper Tillage •Manage Nitrogen Grow Green Manure •Rest the Land Prayer

Organic Matter

Improves soil structure

Feeds Microbes

Source of Plant Nutrients

Breaks Down Into Stable Humus

Improves nutrient and water holding capacity

Sources of Organic Matter

- Crop residues always recycle; till in or compost.
- Green manures grow organic matter right in place.
- Weeds free; till in or compost before they seed.
- Compost builds organic matter while feeding the crop; add at planting time.
- Manure best if composted or well rotted.
- Hay can have weed seeds; use for compost, mulch or sheet composting.

Sources of Organic Matter

- Straw good mulch; till in for next year, can be composted with high nitrogen materials.
- Leaves use as mulch, or composted with high nitrogen materials or sheet composted.
- Leafmold low pH, low in nitrogen; use in conjunction with high nitrogen materials.
- Kitchen scraps best composted; or can be dug into garden rows during off season.
- Food processing waste peanut hulls, sugar cane waste, soybean pulp, rice hulls, etc.

Organic Materials

 High C/N ratio = low nitrogen content (straw-like, dry, woody)

Straw 80:1 Sawdust400:1 Leaves 50:1

Organic Materials

 Low C/N ratio = high nitrogen content (fresh, green, tender)

Clover	15:1
Manure	10-20:1
Grass clippings	15-20:1

Common Mistakes

- Adding large amounts of low-nitrogen organic matter to the soil without balancing it with highnitrogen materials
- Adding large amounts of rough organic matter just before planting.
 - -Ties up nutrients
 - -Interferes with seedbed preparation and planting

General Amendment Application

For a soil initially of low fertility:

	Amount per 1 acre (40,000 sq. ft.)	Amount per 1,000 sq. ft.	Amount per 100 sq. ft.
Manure or compost	40 tons	1 ton	200 lbs.
Colloidal phosphate	2 tons	100 lbs.	10 lbs.
Greensand	2 tons	100 lbs.	10 lbs.

For a soil initially of medium fertility:

	Amount per 1 acre (40,000 sq. ft.)	Amount per 1,000 sq. ft.	Amount per 100 sq. ft.
Manure or compost	20 tons	$\frac{1}{2}$ ton	100 lbs.
Colloidal phosphate	$1 \frac{1}{2}$ tons	75 lbs.	7.5 lbs.
Greensand	$1 \frac{1}{2}$ tons	75 lbs.	7.5 lbs.

For an initially fertile soil:

	Amount per 1 acre (40,000 sq. ft.)	Amount per 1,000 sq. ft.	Amount per 100 sq. ft.
Manure or compost	10 tons	500 lbs.	50 lbs.
Colloidal phosphate	1 tons	50 lbs.	5 lbs.
Greensand	1 tons	50 lbs.	5 lbs.

Maintenance Application

	Amount per 1 acre	Amount per 1,000 sq. ft.	Amount per 100 sq. ft.
Manure or compost (applied every other year)	10 - 20 tons	500 – 1,000 lbs.	50 - 100 lbs.
Colloidal phosphate * (applied in years 2, 6, 10 and so on)	¹ / ₂ ton	25 lbs.	2.5 lbs.
Greensand * (applied in years 2, 6, 10 and so on)	¹ / ₂ ton	25 lbs.	2.5 lbs.
Limestone	As required	As required	As required

* Not necessary if a soil test indicates P, K, and trace minerals are adequate.

Balance Nutrients

•Apply amendments based On CEC Soil Test.

Cation Exchange Capacity

The CEC is like the size of the soil's bucket in which it holds cations.

H⁺:10-15% :10-20% Mgʻ : 3-5% Micronutrients Ca⁺⁺:60-70%

Proper Balance of Cations

Cation Exchange Capacity

60% Ca = 24 ME

60% Ca = 12 ME

CEC = 40 ME

CEC = 20 ME

Taking Soil Sample

Use clean container and tools

Sample to the depth recommended by lab

10-20 probes in random pattern

•Mix thoroughly and send one cup to lab

Areas to Avoid When Sampling

Areas with different soils or treatments

Edges of field

Where lime or compost piles have been

Locat	ion		FAR GAR	RDEN & CORN / CORN & BEANS	& OKRA
Field Lab N Total	<i>l Sample</i> lo. Exchange Capacity (M.E.	>	E0096 15.56	40	
Desire pH of Humu	ed Car: Mg, Percent Soil Sample us Content, Percent		5.7 4.0	. 12	
BAS Calc Mag Pota Sod Oth EXC	E SATURATION PER sium (60 to 70%) mesirum (10 to 20%) assium (2 to 5%) ium (.5 to 3%) er Bases (Variable) CHANGEABLE HYDR	CENT 80% OGEN (10 to 15%)	51.78 11.73 5.90 0.59 6.00 24.00	RECOMMENDATIO	NS
A	NITROGEN Lbs/Acre	ENR Value	90	Amendment PROTEIN MEAL 11% N (a)	Lbs/1000' 9.25 Lbs
N O I N	SULFATE - S p.p.m.	Value Found	13	SULFUR 90-92% (b)	2 Lbs
S	PHOSPHATES as (P2O5) Lbs/Acre	Desired Value Olsen Value Value Found Deficit/Surplus	500 863 +363	NONE	
(management)			1		

	CALCIUM Lbs/Acre	Desired Value Value Found Deficit/Surplus	4232 3223 -1009	CALCIUM CARB (c)	29.75 Lb
CAT	MAGNESIUM Lbs/Acre	Desired Value Value Found Deficit/Surplus	448 438 -10	DOLOMITE (c)	62 Lbs
I O N	POTASSIUM Lbs/Acre-	Desired Value Value Found Deficit/Surplus	910 716 -194	POT SULFATE 0-0-50	8.5 Lbs
S	SODIUM Lbs/Acre	Desired Value Value Found Deficit/Surplus	72 42 -30		
TRACES	Boron Iron Manganese Copper Zinc	p.p.m. p.p.m. p.p.m. p.p.m. p.p.m.	0.98 371 119 6.10 36.00	BORAX 11% (d) NONE	7.25 oz

Location Crop Field / Sample		ASPARAGUS / ASPARAGUS / Sample PLOT 4			Previous Analyses & Applications						
Lab No Total E Desire pH of S Humus	5. Exchange Capacity (M.E d Ca : Mg, Percent Soll Sample 5 Content, Percent	E.)	ED087 13.14 68 : 12 8.3 0.8								
EASE Calcl Magr Potae Social Other	E SATURATION PER um (60 to 70%) tesium (10 to 20%) ssium (2 to 5%) um (.5 to 3%) r Bases (Variable)	RCENT	79.38 11.92 4.50 1.11 3.09			8	19 4	56		56	Î
EXCI	HANGEABLE HYDR	ROGEN (10 10 15%)	0.00	RECOMMENDATIC	INS .						
A N	NITROGEN Lbs/Acre	ENR Value	32	BIEAN SPLITS	321.5 Lb	8	LOS		us		
1 0 N	SULFATE - S p.p.m.	Value Found	33	SULFUR 90-92%	14.5 oz				22		
*	PHOSPHATES as (P2OS) Lbs/Acre	Desired Value Olsen Value Value Found Deficit/Surplus	750 136 519 -231								
2234	CALCIUM Lbs/Acre	Desired Value Value Found Deficit/Surplus	3574 4172 +598	NONE		Amend	added	Amend	added	Amend	ad
CAT	MAGNESIUM Lbs/Acre	Desired Value Value Found Deficit/Surplus	378 376 -2								
IONS	POTASSIUM Lbs/Acre	Desired Value Value Found Deficit/Surplus	769 461 -308	POT SULFATE 0-0-50	5.75 Lbs	OPTIONAL	f composi	t is applied as re	commen	ded.)	
	SODIUM Lbs/Acre	Desired Value Value Found Deficit/Surplus	60 67 +7			P.P.M		P.P.M		Р.Р.М	
TRACES	Boron Iron Manganese Copper Zinc	p.p.m. p.p.m. p.p.m. p.p.m. p.p.m.	1.32 38 64 0.20 25.30	BORAX 11% FE SULFATE 21% (a) (b) NONE CU SULFATE 23% NONE	7.25 oz 9.25 Lbs 11 oz	(Or 1.75 as/10	oo eq ft pe COO	er year for 6 yea	n.)		

READING KINSEY'S CEC SOIL ANALYSIS REPORT

TEC: This the total Cation Exchange Capacity (CEC) based on the clay and humus content of the soil, measured in milliequivalents (ME). Average range for sandy soils < 8 Average range for heavy soils 15 - 40

pH: 6 - 6.5 If the exchange capacity is balanced, the pH will come into the correct range.

Humus Content: 2.5 - 7.5 % Below 2.5 % the microbes are on a starvation diet. Above 7.5 % certain elements will be tied up.

Target base saturation percentages Calcium: 60 – 70 % (67 - 69% for clay soil) (60 % for sandy soil) (10 - 12% for clay soil) Magnesium: 10 - 20 % (15 - 20 % for sandy soil) Calcium & Magnesium together should equal 80% Potassium: 2 - 5 % (3 - 5% for most crops) (7.5 % for woody plants) Sodium: 0.5 - 3 % Other bases (trace elements): variable Exchangeable hydrogen: 10 - 15% = pH 6.0 - 6.50 % hydrogen = pH 7.0

Anions: These negatively charged nutrients, such as nitrogen, phosphorus, and sulfur, are held in the soil solution and complexed with organic matter and other elements.

Nitrogen: The Estimated Nitrogen Release (ENR Value) is not an actual measurement of the available nitrogen in the soil. It is an estimate of how much nitrogen will be released during the growing season based on the humus content percentage of the soil. A humus content of 5.1 % will give an ENR of 100 lbs./acre. The actual amount of nitrogen released may vary with the soil and weather conditions.

Sulfates: Phosphates: 25+ ppm

Phosphates: Measured as P2O5 in lbs./acre -Minimum: 300 lbs./acre -Excellent: 500-750 lbs./acre

Trace Elements: Targets for trace elements in ppm:

	Minimum	Excellent	Excess
Boron	0.8	1.0 +	2.0
Iron	100	200 +	
Manganese	40	125	250 +
Copper	2.0	5.0	10.0 +
Zinc	6.0	10.0 +	20.0

Since trace elements are needed in small amounts, great care should be taken when applying individual trace elements to use the correct amounts and to spread the material evenly. It is helpful to mix trace mineral amendments with sand to make spreading small quantities easier.

Sources of Nitrogen (N)

- Compost
- Manure
- Legume crops
- Leguminous green manure
- Protein meal

Sources of Phosphorus (P)

- Colloidal phosphate 2-3% P available
- Compost
- Manure

Sources of Potassium (K)

- Compost
- Granite dust 5% K very slow release
- Greensand 5% K slow release
- Wood ashes
- Potassium sulfate 50 % K

Sources of Calcium

High calcium lime 39% Ca
Dolomite lime 21% Ca, 11% Mg
Gypsum 24% Ca, 17% S

Sources of Magnesium

Dolomite lime 21% Ca, 11% Mg
Magnesium sulfate (Epsom salt) 9% Mg

Sources of Trace Elements

Boron – Borax 11% boron
Iron - Iron sulfate 21% iron
Manganese - Manganese sulfate 32% Mn
Copper – Copper sulfate 25% copper
Zinc – Zinc sulfate 35% zinc

Proper Tillage

Break up compaction

Improve water in-soak

Incorporate amendments & organic materials

Prepare seed bed

Manage Nitrogen

- Apply nitrogen in rotation for best returns
 - Heavy feeder
 - Light feeder
 - Soil builder

In-Row Natural Fertilizer Application

- Alfalfa pellets, approx. analysis:
 - N (nitrogen) 2.5%,
 - P (phosphorus) 0.5%,
 - K (potassium)
 2.0%
- Incorporate into soil under rows at planting time:
 - Average soil 400 lbs./acre (2.5 lbs./100 ft. row)
 - Poor soil
 800 lbs./acre (5 lbs./100 ft. row)

In-Row Natural Fertilizer Application

Soybean meal, approx. analysis

- N 7.0%
- P 1.5%
- K 2.3%
- Drill beside row at planting time or when plants are up:
 - Average soil 200 lbs./acre (1.25 lbs./100 ft. row)
 - Poor soil 400 lbs./acre (2.5 lbs./100 ft. row)

Benefits of Green Manure

- Builds organic matter
- Improves soil structure
- Increases biological activity
- Increases availability of nutrients
 - Legumes fix nitrogen from the air
- Prevents leaching and erosion
- Suppresses weeds
- Decreases insect and disease problems

Rest the Land

"There is much mourning over unproductive soil, when if men would read the Old Testament Scriptures they would see that the Lord knew much better than they in regard to the proper treatment of land. After being cultivated for several years, and giving her treasure to the possession of man, portions of the land should be allowed to rest, and then the crops should be changed." FE 323

Pray

If My people, who are called by My name, shall humble themselves and pray, and seek My face, and turn from their wicked ways, then I will hear from Heaven and will forgive their sin and will heal their land. 2 Ch 7:14