Adventist Agricultural Association 4th Annual Convention 2018
Session 1

Nitrogen Cycle

PRESENTED BY:

MICHAEL ROCKY TREVIZO

Forms of soil N

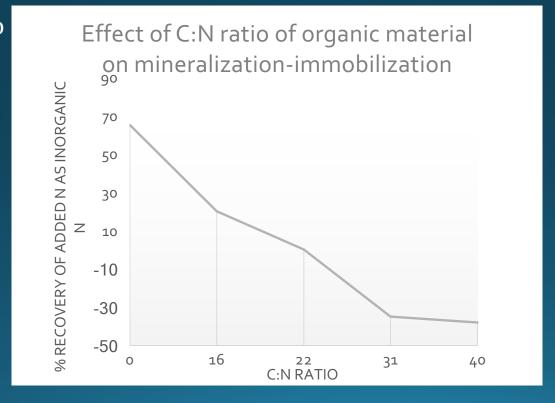
- Elemental (N₂)
 - Gas in soil atmosphere
 - Dissolved in soil water
 - Symbiotic and non-symbiotic fixation
 - Generates NH₄⁺
- Inorganic forms
 - Gases present in small amounts in soils
 - N₂O, NO, NO₂, <u>NH₃</u>
 - Ionic forms
 - NH₄ exchangeable and non-exchangeable forms
 - NO₃, NO₂
 - Organic forms -98% of total soil N

N Transformations and cycling in soils

N Gains	N losses	N Cycling (within soil, N not lost)
Fixation (biological or mechanically – fertilizer)	Plant Uptake	Immobilization
Animal manure	Denitrification	Mineralization
Crop residue	Volitization	Nitrification
	Leaching	
	Ammonium fixation	

February 13, 2018 4

Vocabulary


- Nitrification: Conversion of NO2 to NO3
- Denitrification: Conversion of NO₃ to N gas
- Immobilization: Conversion of PAN to Plant unavailable N
- Nitrogen Fixation: Non Organic/Non Mineral forms of N to Organic forms of N
- Mineralization: The conversion of an element from an organic from to an inorganic state as a result of microbial decomposition.

N Mineralization

- Conversion of organic N to NH₄⁺ through two reactions:
 - aminization: converts proteins in residues to amino acids, amines, and urea
 - **ammonification:** further converts organic N compounds to inorganic NH₄⁺
 - The NH₄⁺ produced is subject to several fates:
 - Nitrification
 - N uptake
 - immobilization
 - NH₄+ fixation
 - Volatilization

N Immobilization

- Conversion of inorganic N (NH₄⁺ and NO₃⁻) to organic N
 - If decomposing residues contain low N, microorganisms will immobilize $\mathrm{NH_4}^+$ and $\mathrm{NO_3}^-$ in the soil solution
 - C:N ratio

TABLE 16–2 Validly Described Genera and Species of Root-Nodule Bacteria of Legumes. Changes to this taxonomy suggested by Young et al. (2001) are in bold type. Genera in the square brackets refer to better-known host legumes nodulated by each species of rootnodule bacteria. Common names are included for well-known legume genera. In several examples in this list, different species of root-nodule bacteria nodulate the same legume.*

Azorhizobium**

A. caulinodans [Sesbania]

Bradyrhizobium

B. elkanii [Glycine, soybean]

B. japonicum [Glycine]
B. liaoningense [Glycine]

B. yuanmingense [Lespedeza]

Mesorhizobium

M. amorphae [Amorpha]

M. chacoense [Prosopis, mesquite]

M. ciceri [Cicer, chickpea]

M. huakuii [Astragalus, milkvetch]

M. loti [Lotus]

M. mediterraneum [Cicer]

M. plurifarium [Acacia, Leucaena, Ipil-ipil]

M. tianshanense [Glycyrrhiza, Sophora]

Rhizobium

R. etli [Phaseolus vulgaris, bean]

R. galegae [Galega, Leucaena]

R. gallicum [Phaseolus, Dalea, Onobrychis,

Leucaena]

R. giardinii [Phaseolus]

R. hainanense [Stylosanthes, Centrosema]

R. huautlense [Sesbania]

R. indigoferae [Indigofera]

R. leguminosarum

bv trifolii [Trifolium, clover]

bo viciae [Pisum, peas, Vicia, field beans,

Lathyrus; and Lens, lentil] bv phaseoli [Phaseolus]

R. loessense [Astragalus]
R. mongolense [Medicago, Phaseolus]

R. sullae [Hedysarum]

R. tropici [Phaseolus; Leucaena, Dalea,

Macroptilium]

Allorhizobium

A. undicola, R. undicola [Neptunia]

R. radiobacter [non-nodulating saprophyte], R. rhizogenes [causes hairy root disease],

R. rubi, R. vitis

Sinorhizobium

S. abri [Abrus]

S. americanus [Acacia]

S. arboris

S. fredii [Glycine]

S. indiaense [Sesbania]

S. kostiense

S. kummerowiae [Kummerowia]

S. medicae [Medicago]

S. meliloti [Melilotus, sweetclover; Medicago, alfalfa; and Trigonella,

fenugreek]

S. morelense [Leucaena]

S. saheli, S. sahalense [Sesbania]

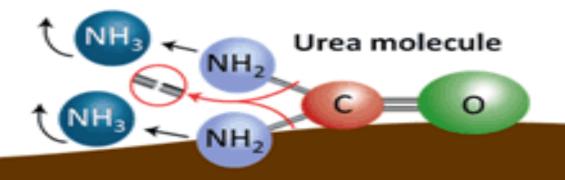
S. terangae [Sesbania, Acacia]

S. xinjiangense [Glycine]

**Strains which have not yet been recognized as belonging to any named species are usually identified by the host from which they were isolated—for example, Rhizobium spp. (Acacia) or Bradyrhizobium spp. (Lupinus).

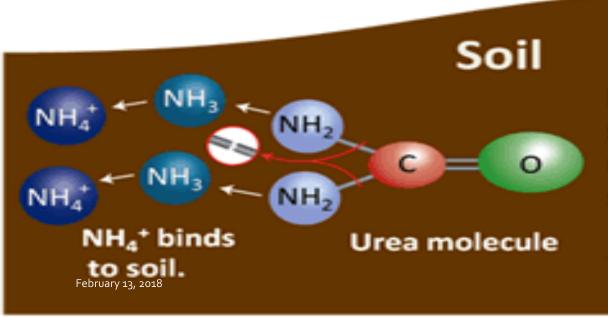
^{*}Other genus and species names exist in the literature. Some predate the present names; others have not been accepted as valid.

Events Leading to Nodulation and Dinitrogen Fixation in Legumes


- Attachment of rhizobia to the root begins within 1 minute of inoculation.
- Number of attached rhizobia increases with time up to several hours.
- Root hair curling begins within 5 hours.
- Infection threads visible in the root hair within 3 days of inoculation.
- Nodule become visible within 5 to 12 days.
- N2 fixation is often evident in 15 day-old plants.

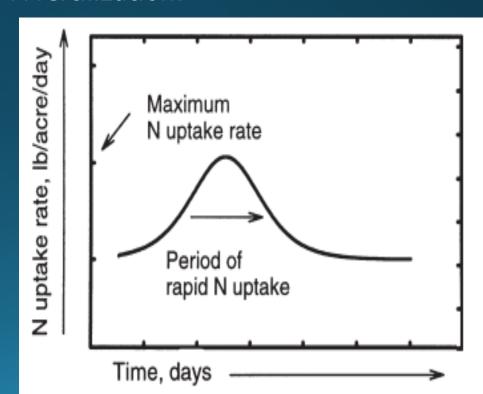
N use and fertility

- Global use of manufactured N fertilizers has increased by a factor of 8 over past six decades
- Efficiency of fertilizer N is frequently low
 - Often <50% of applied N is taken up by crop
 - For recommended rates 50-70% efficiency assumed

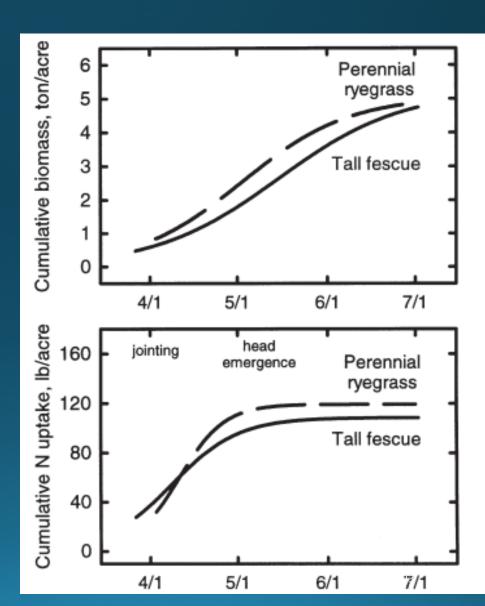

February 13, 2018 10

Gaseous ammonia released to the air

Soil


If urea is hydrolyzed by urease at the **soil surface**, part of the NH₃ that is released may be lost to the air.

If urea is hydrolyzed by urease within the soil, the NH₃ that is released reacts with soil water to form NH₄*, which adheres to soil components.


Timing of N availability

- Seedling stage: N demand small
- Rapid vegetative growth (4 to 6 weeks): High N demand
- Reproductive growth (flowering): N moves from leaves to seed
 - Little or no additional N uptake
- What time is most efficient for N fertilization?

Timing of N availability

- Seedling stage: N demand small
- Rapid vegetative growth (4 to 6 weeks): High N demand
- Reproductive growth (flowering): N moves from leaves to seed
 - Little or no additional N uptake
- What time is most efficient for N fertilization?

cereal rye cover crop scavenges nitrate over the winter

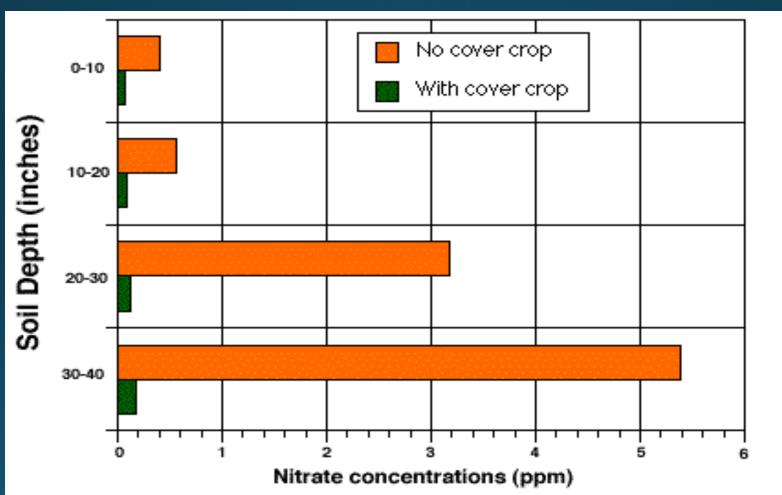


Figure 3. Effect of a cereal rye cover crop on soil nitrate concentrations (ppm) in broccoli plots fertilized the previous spring with 250 pounds Nacre. Samples were taken April 15, 1992.

(Data from Hemphill and Hart, 1993.)

Part 2

Estimated Average Rates of Riological No.

Estimated Average Rates of	biological in ₂
Fixation	
Organism or system	N ₂ fixed (kg ha ⁻¹ y ⁻¹)
Free-living microorganisms Cyanobacteria Azotobacter Clostridium pasteurianum	25 0.3 0.1-0.5
Grass-Bacteria associative symbioses Azospirillum	5-25
Cyanobacterial associations Gunnera Azolla Lichens	10-20 50 40-80
Leguminous plant symbioses with rhizobia Grain legumes (Glycine, Vigna, Lespedeza, Phaseolus) Pasture legumes (Trifolium, Medicago, Lupinus)	20-180 50-300
Actinorhizal plant symbioses with Frankia Alnus Hippophaë	40-300 1-150

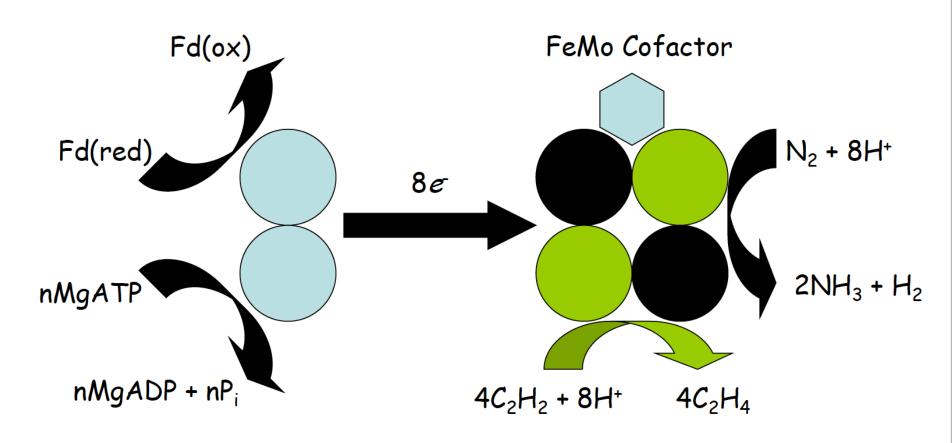
1-50

50-150

50

Ceanothus

Coriaria


Casuarina

Nitrogen Fixation Process

Energetics

- N≡N
- Haber-Bosch (100-200 atm, 400-500°C, ~1,900 kJ kg⁻¹ N)
- · Nitrogenase (~950 kJ kg-1 N)

Nitrogenase

Dinitrogenase reductase

Dinitrogenase

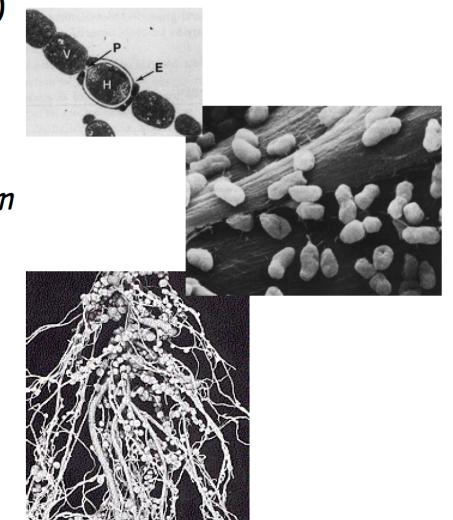
 $N_2 + 8H^+ + 8e + 16 MgATP \rightarrow 2NH_3 + H_2 + 16MgADP$

Genetics of Nitrogenase

Gene	Properties and function
nifH	Dinitrogenase reductase
nifDK	Dinitrogenase
nifA	Regulatory, activator of most <i>nif</i> and <i>fix</i> genes
nifB	FeMo cofactor biosynthesis
nifEN	FeMo cofactor biosynthesis
nif5	Unknown
fixABCX	Electron transfer
fixK	Regulatory
fixLJ	Regulatory, two-component sensor/effector
fixNOQP	Electron transfer
fixGHIS	Transmembrane complex

Types of Biological Nitrogen Fixation

Free-living (asymbiotic)


- · Cyanobacteria
- Azotobacter

Associative

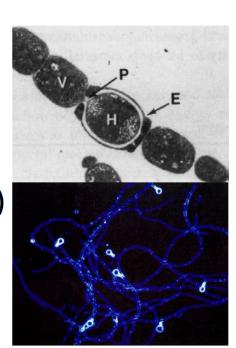
- Rhizosphere-Azospirillum
- · Lichens-cyanobacteria
- · Leaf nodules

Symbiotic

- · Legume-rhizobia
- · Actinorhizal-Frankia

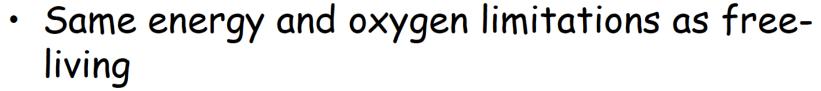
Free-living N₂ Fixation

Energy


20-120 g C used to fix 1 g N

Combined Nitrogen

- · nif genes tightly regulated
- Inhibited at low NH₄⁺ and NO₃⁻ (1 μ g g⁻¹ soil, 300 μ M)


Oxygen

- Avoidance (anaerobes)
- · Microaerophilly
- · Respiratory protection
- Specialized cells (heterocysts, vesicles)
- Spatial/temporal separation
- Conformational protection

Associative N₂ Fixation

- Phyllosphere or rhizosphere (tropical grasses)
- · Azospirillum, Gluconacetobacter
- 1 to 10% of rhizosphere population
- Some establish within root

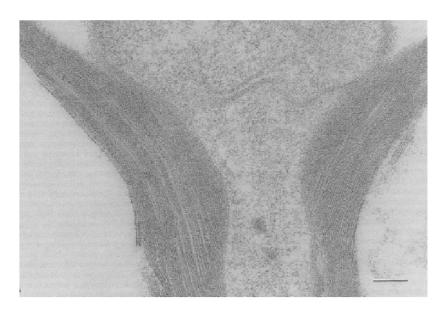
 Gluconacetobacter diazotrophicus lives in internal tissue of sugar cane, grows in 30% sucrose, can reach populations of 10⁶ to 10⁷ cells g⁻¹ tissue, and fix 100 to 150 kg N ha⁻¹ y⁻¹

Phototrophic N2-fixing Associations

- Lichens-cyanobacteria and fungi
- Mosses and liverworts some have associated cyanobacteria

Azolla-Anabaena (Nostoc) —
 cyanobacteria in stem of water fern

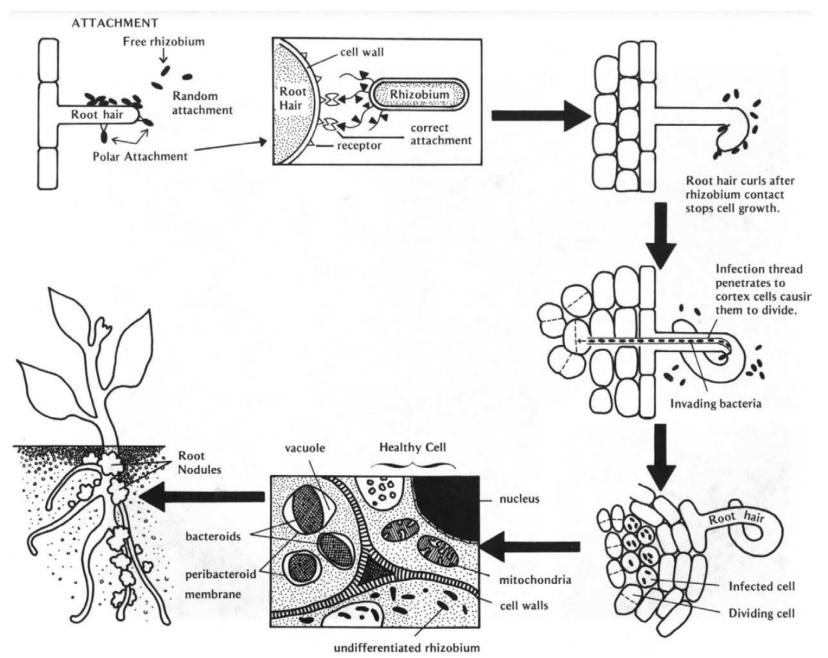
 Gunnera-Nostoc — cyanobacteria in stem nodule of dicot



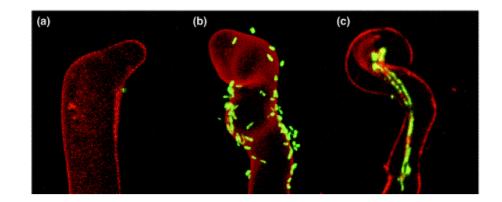
 Cycas-Nostoc — cyanobacteria in roots of gymnosperm

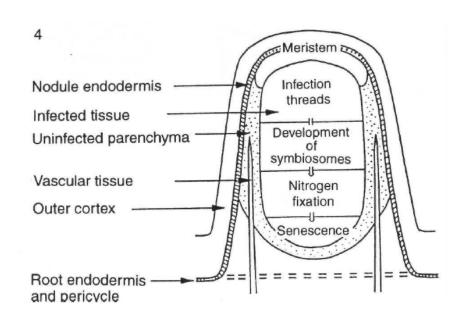
Frankia and Actinorhizal Plants

Actinobacteria (Gram +, filamentous);
 septate hyphae; spores in sporangia; thick-walled vesicles


Frankia vesicles showing thick walls that confer protection from oxygen. Bars are 100 nm.

Actinorhizal Plant Hosts


Family	Genera
Betulaceae	Alnus
Casuarinaceae	Allocasuarina, Casuarina, Ceuthostoma, Gymnostoma
Myricaceae	Comptonia, Myrica
Elaeagnaceae	Elaeagnus, Hippophaë, Shepherdia
Rhamnaceae	Ceanothus, Colletia, Discaria, Kentrothamnus, Retanilla, Talguenea, Trevoa
Rosaceae	Cercocarpus, Chamaebatia, Cowania, Dryas, Purshia
Coriariaceae	Coriaria
Datiscaceae	Datisca


Nodulation in Legumes

Infection Process

- Attachment
- Root hair curling
- Localized cell wall degradation
- Infection thread
- Cortical cell differentiation
- Rhizobia released into cytoplasm (symbiosome formation)
- Bacteroid differentiation
- Induction of nodulins



Indeterminate (pea) nodule

Legume-Rhizobium Symbiosis

- The subfamilies of legumes (Caesalpinioideae, Mimosoideae, Papilionoideae), 700 genera, and 19,700 species of legumes
- Only about 15% of the species have been evaluated for nodulation
- Rhizobium
 - · Gram -, rod
 - Most studied symbiotic N₂-fixing bacteria
 - Now subdivided into several genera
 - Many genes known that are involved in nodulation (nod, nol, noe genes)

Taxonomy of Rhizobia

Genus	Species	Host plant
Rhizobium (~30 species)	leguminosarum bv. trifolii " bv. viciae " bv. phaseoli tropici etli galegae	Trifolium (clovers) Pisum (peas), Vicia (field beans), Lens (lentils) Phaseolus (bean), Leucaena Phaseolus (bean) Galegae (goat's rue)
Ensifer (Sinorhizobium, ~10 species)	meliloti fredii saheli americanum	<i>Medicago</i> (alfalfa) <i>Glycine</i> (soybean) <i>Sesbania</i> <i>Acacia</i>
Bradyrhizobium (~13 species)	japonicum elkanii liaoningense	Glycine (soybean) Glycine (soybean) Glycine (soybean)
Azorhizobium (2 species)	caulinodans	Sesbania (stem nodule)
Mesorhizobium (~20 species)	loti huakuii ciceri mediterraneum	Lotus (trefoil) Astragalus (milkvetch) Cicer (chickpea) Cicer (chickpea)
Allorhizobium	undicola	Neptunia
Photorhizobium	spp.	Aeschynomene (stem nodule)